Renewable energy Market and perspectives

Didier Mayer, MINES ParisTech Paris, 17/11/15

The context

- Increase of energy import dependency
- Instability of fossil fuel prices, scarcity of fossil fuels
- Climate change
- Security aspects

Energy dependency

Note: Self-sufficiency is calculated as indigenous energy production (including nuclear power) divided by total primary energy demand.

Energy related CO2 emissions in selected countries

Energy related CO2 emissions and CO2 intensity per capita in selected countries

World total primary energy consumption by region – 2012

13 620 Mtoe 158 000 TWh

Primary energy use and CO2 emissions by sector and final energy demand

Estimated RE share of global final energy consumption - 2013

Breakdown of world global Renewable Energy used

Breakdown of world global Renewable Energy used

REmap 2030 - 132 EJ

Renewable energy sources and technologies

		Electricity	Heating and Cooling	Transport
	Wind	Onshore Offshore		
	Hydro	Small Hydropower (<10MW) Large Hydropower (>10MW)		
•	Solar	Photovoltaics (PV) Concentrated Solar Power (CSP)	Solar Thermal	
	Ocean	Wave; Tidal; Thermal; Osmotic		
	Geothermal	Conventional Geothermal Electricity (hydrothermal); Electricity ORC and Kalina Cycle; Enhanced goethermal systems (EGS); Supercritical fluids	Direct Use Ground Source Heat Pumps	
	Bioenergy	Biomass Biogas	Biomass Biogas	Bioethanol Biodiesel Biogas

Biomass resources and energy pathways

* Organic solid and liquid wastes

Estimated RE share of global electricity production-2013

1053 GW Hydro + 657 GW others

World Renewable power capacities not including hydropower

Global new investments in RE technologies

Global new investments in RE by technologies

REN21 Renewables 2015 Global Status Report

Source: Frankfurt School-UNEP and BNEF

Jobs in Renewable Energy

(Biomass, Biofuels, Biogas)

Bioenergy

Geothermal

Hydropower (Small-scale)ⁱ

Solar Energy (Solar PV, CSP, Solar Heating/Cooling)

۲

Wind Power

World Total: 7.7 Million Jobs

Scenario IEA Energy Technology Perspective 2014

6DS : expresses the current policy. By 2050 energy use grows by more than 2/3
4DS : takes into account the recent decisions to limit CO2 emissions and improve energy efficiency

2DS : identifies changes that help ensure a secure and affordable energy system in the long run

Scenario IEA Energy Technology Perspective 2014

Sectorial electricity demand and share of electricity in final energy demand in 2DS

Electricity generation : a share reversal

Additional effect of decarbonizing electricty in 2DS

LCOE of power generation technologies

Evolution of the capital costs of power generation technologies

EU climate and energy package

Decision of the European council 8/9 March 2007

Compulsory targets for the EU at 2020

- 20% Energy consumption reduction comparing to the white book objectives (at present nothing)
- 20% at least, CO2 emission reductions
- 20% contribution of RE in the energy supply of the EU as a binding target, except for biofuels
- 10% contribution of biofuels for transportation (at present 2,5%)

RE share of energy consumption by member state in 2020

Final energy

Electricity

Progress as of 2012

- Greenhouse gas emissions decrease by 18% relative to emissions in 1990 and are expected to reduce further to levels 24% and 32% lower than in 1990 by 2020 and 2030 respectively on the basis of current policies.
- The share of renewable energy has increased to 13% in 2012 as a proportion of final energy consumed and is expected to rise to 21% in 2020 and 24% in 2030.
- The EU installed about 42% of the world's renewable electricity (excluding hydro) at the end of 2012.
- The carbon intensity of the EU economy fell by 28% between 1995 and 2010.

EU power capacity mix

Installed power generating capacity per year in MW

New policy framework from 2020 to 2030

- New reduction target for domestic GHG emissions of 40% compared to 1990 as the centre piece of the EU's energy and climate policy for 2030.
- A greater share of renewable energy in the EU of at least 27%. The share of renewable energy in the electricity sector would increase from 21% today to at least 45% in 2030.
- In terms of energy consumption reduction, a shortfall against the 20% target is predicted. Once the review has been carried out, the Commission will consider whether it is necessary to propose amendments to the Energy Efficiency Directive.

However, a greenhouse gas emissions reduction target of 40% would require an increased level of energy savings of approximately 25% in 2030.

Total primary energy consumption in China (2011)

• China is the largest consumer of primary energy in the world with a growth of about 7% per year.

China's installed electricity capacity (2012)

- China is the world largest power generator with an installed capacity of about 1 000 GW and a production of about 4 480 TWh (2011).
- 7 300 TWh in 2020
- 11 600 TWh in 2040
- 75% for industry needs, at present

Sources: FACTS Global Energy, IHS Cera, Chinese Renewable Energy Industries Association.

Forecast of China's installed electricity capacity (2040)

Source: EIA, International Energy Outlook, 2013.

Air pollution in big cities

Very fast improvement is needed in energy mix and energy efficiency

China : one of the leader in the RE production

In parallel, China became the world's leading producer of renewable electricity.

Chinese Objectives in terms of energy production and environmental impacts

12th Five-Year Plan (2011-2015)

- Non energy fossil will reach 11,4% of total primary energy consumption 290 GW hydro - 40 GW nuclear – 100 GW wind – 21 GW solar 400 millions m2 of solar heat collection
- Energy consumption (by unit of GDP) will decrease by 16% from 2010
- CO2 emission (by unit of GDP) will decrease by 17% from 2010

Commitment by 2017

• Cap coal use below 65% of the total primary energy consumption

Commitment by 2020

- Non energy fossil will account for 15% of total primary energy consumption
- CO2 emission (by unit of GDP) will be 40-45% lower than in 2005
- Coal share in the energy mix must fall at 63% in 2020 and 55% in 2040
Future power system with high penetration of RE

European renewable energy grid

This map shows the current role of renewable energy sources in a fragmented power system. After hydro, wind is the largest renewable power generation source, with around 4.8% of EU electricity demand. Wind energy already has a considerable share in the Northern German, Danish and Iberian power systems.

European renewable energy grid

2040

Due to increased power demand and a more integrated electricity market, renewable energy penetration levels increase significantly by 2040. Wind power in the North and Baltic sea neighbouring countries, hydro in Scandinavia and in the Alps, PV/CSP in Southern Europe, biomass in eastern Europe and marine renewables in the North Atlantic area, will all contribute.

The importance of interconnections

The technology choice of the neighbour countries has an impact on your network

The Merit Order effect as of 2012 in EU

Make the consumption flexible

- Control the load profile
- Allow the development of shaving capacities

Smart distribution grid concept

- Faciliter l'injection d'EnR
 - Participation des Enr aux services systèmes
 - Limiter l'impact de l'intermittence (prévision, stockage)
 - Réseaux inter-continentaux
 - Adapter la demande à l'offre : pilotage de la demande
- Favoriser la MDE / MDP
 - Limiter les pertes sur le réseau / favoriser l'efficacité énergétique du réseau
 - Faciliter le déploiement chez les consommateurs (interopérabilité, confidentialité des données)
 - Impliquer les consommateurs (information, appropriation des nouvelles techno, aspect sociologique)
- Anticiper l'évolution des réseaux et des usages et tester de nouveaux modèles d'affaires
 - Effacer plutôt que produire : métier d'agrégateur
 - Agréger les productions renouvelables
 - Faciliter la communication entre les différentes échelles du réseau
 - Synergie avec opérateurs Internet
 - Intégrer les nouveaux usages (VE...)

Smart meter

Le compteur évolué et son environnement

Grid Observability

AMM : advanced metering management VVC : voltage/VAR control DMS : distribution Management system

17/11/2015

Name, Surname, « Title », European master in Renewable Energy, Sophia Antipolis, dd/mm/yyyy

Energy box as energy manager

France : mix énergétique 2030

17/11/2015

Name, Surname, « Title », European master in Renewable Enery, Sophia Antipolis, dd/mm/yyyy

France : mix énergétique 2050

17/11/2015

Ademe :Bilan des scenarios 2030-2050

- Réduction de 50% de la demande d'énergie à l'horizon 2050
- Une part croissante et maitrisée des énergies renouvelables

Climate policy scenario

- BL : no specific energy policy
- NR : low investment cost for RE technologies
- CP : evolution of the CO2 value

Wind

Power density of a wind turbine

Turbines

Evolution of the wind turbine size

Frequency of wind speed – capacity factor

Typical wind farm site

Capacity factor

Global wind power installed capacity (GW)

Cumulative wind power installations (GW) and market share in the EU

Top 10 Cumulative Capacity (December 2012)

Wind share of total electricity consumption

Examples of high penetration (Denmark)

Hourly wind power in percent of hourly consumption in Denmark (DK1 area) in 2007

30% of Denmark's electricity consumption was covered by wind energy in 2011. Targets: 50% of its electricity from wind by 2020 and 100% from renewable energy by 2050.

Examples of high penetration (Spain)

Daily profile of wind generation in Spain (11/6/2011)

Investment costs

	INVESTMENT (€1,000/MW)	SHARE OF TOTAL COST %
Turbine (ex works)	928	75.6
Grid connection	109	8.9
Foundation	80	6.5
Land rent	48	3.9
Electric installation	18	1.5
Consultancy	15	1.2
Financial costs	15	1.2
Road construction	11	0.9
Control systems	4	0.3
TOTAL	1,227	100

Note: Calculated by the author based on selected data for European wind turbine installations

Cost of wind power as a function of wind speed and discount rate

Market share of the top 10 Wind Turbine manufacturers in 2013

Vestas (Denmark) 13.1%	Goldwind (China) 11.0%	Enercon (Germany) 9.8%	f	Source: See Endnote 87 or this section.
		Siemens (Germany) 7.4%		
Others 30.5%		GE Wind (U.S.) 6.6%	Gamesa (Spain) Suzlon Group (India	5.5%) 5.3%
	Next 5 manufacturers	United Power (China) Mingyang (China) Nordex (Germany)	a) 4.0% 3.5% 3.3%	
			Based on total sales of	~37.5 GW

Wind Energy : What is the future?

Targets for EU [EWEA*]: Technology leadership Max. competitiveness Total installed capacity (GW) European Wind Initiative 350 200 GW 57% 230 Offshore is main market 33% of EU electricity from wind 2012: 109 GW 1,5 GW 296 Offshore 66 Offshore takes off 64.5 GW 20% of EU electricity from wind Onshore 98% Year 2008 2050: Exports from EU 2020 2030 are strong; repowering is key market

(*) EWEA : European Wind Energy Association

Key figures

- Capacity factor: 25 % 40%
- Ratio power / swept area: ~ 400 W/m2
- Life time of turbine : ~20 years
- Investment cost : 1 200 2 300 €/kW
- Energy payback time : ~ 6 months

670 000 The number of people employed worldwide by the wind industry in 2011

5,7 billion Euro worth of wind industry products and services exported by EU in 2011

2.5% The percentage of world's electricity supplied by wind power. 8-12% by 2020

5,500 The number of average EU households that one 6 MW offshore turbine can power

126 Mt of avoided CO₂ emissions in 2010 by the 84 GW wind power in EU =30% of EU cars

Photovoltaics

Spectral distribution of solar irradiation

Energy diagram for different materials

Doping

N type Si

P type Si

Operation of a solar cell

Gap energy of selected materials

and a second sec	Ge	Si	GaAs	InP	CdS	CdTe
Atomes/cm ³	4,42 · 10 ²²	5,02 · 10 ²²	2,21 · 10 ²²	1,99 · 10 ²²	2,02 · 10 ²²	1,48 · 10 ²²
Masse moléculaire	72,60	28,08	144,63	145,79	144,46	240
Structure cristalline	diamant	diamant	Zn blende	Zn blende	Wurtzite	Zn blende
Constante de réseau [Å]	5,6575	5,4309	5,6534	5,8688	4,16/6,76	6,477
Indice d'ionicité	0	0	0,31	0,42	0,69	0,68
Densité [g/cm ³]	5,327	2,328	5,316	4,790	4,820	5,860
Gap à 300 K [eV]	0,67	1,12	1,43	1,29	2,42	1,44
Indice de réfraction <i>n</i>	4,00	3,42	3,30	3,37	2,53	2,75
Const. diélectr. rel.	16	11,8	11,5	12,1	11,6	10,9
Champ de claq. [V/cm] .	10 ⁵	3 · 10 ⁵	4 · 10 ⁵			

Tableau 3.31 Principales propriétés physiques des semiconducteurs usuels.
Notion of spectral response

Spectral response

Heterojunction cell response

Association of semi-conductor materials GaAs, AlGaAs, InGaAsefficiency up to 40%

Distribution of the world PV production among technologies - 2012

Production process : The PV value chain

Module efficiency road map

World PV global cumulative installed capacity

World global annual PV installations

Capacity Factor

Number of hours of operation at the nominal rate

Different configurations of PV systems

source: EPIA.

Stand alone systems

Building integrated systems

Multi Megawatts power plants

Key figures

- Efficiency of a Si-C PV module : ~13-20 %
- Efficiency of the whole system : $\sim 10 17 \%$
- Ratio installed area / power : ~8m²/kW (roof top) : ~20m²/kW (power plant)
- Lifetime of a generator : ~30 years degradation < 10%
- Investment cost : 2 200 4 000 €/kW roof top 1 500 - 2 500 €/kW PV plant
- Capacity factor : 900 1 500 h/an
- Energy payback time : 2-5 years

Necessary PV area to supply the french and the world electricity needs

Influence of the support programme: the case of Germany

Comparison : french and german situations

Increasing self-consumption with load management

Load management and storage

Experience curve for PV modules and extension to 2035

Levelized cost of electricity for PV

source: Greenpeace/EPIA Solar generation VI 2010.

Solar thermal

Different components of solar irradiation

Solar potential for CSP applications

Source: Krieth & Krieger, Principles of Solar Engineering, Mc Graw Hill, 1978

Solar concentrating systems

Concentration > 5000 $T_{HTF} > 600 °C$ 0 - 100 kW_th

Solar concentrating technologies

Trough collectors

Heat transfer fluid

Natural oil

- Synthetic oil Medium pressure
- Water/steam High pressure

Advantages :

modular system – high power level (>100 MW) simple construction, one tracking axis, integrated receptors not high installation and operation costs (ground station) Inconvenients :

Low concentration level (20-100)). Moderate temperatures (250 – 400°C)

Modest efficiencies for the whole cycle.

Parabolic trough power plant with molten salt energy storage

ANDASOLPower Plant (Spain 2006) 50 MWe Rankine cycle Annual equivalent full load : 3 600 Solar field : 200 ha Storage : molten salts, 7,5 h reserve Annual electricty production : 179 GWh

Plant Description

AndaSol project solar field, storage and steam cycle operation

Solar Tower

Moltensalts

Heat transfer fluid

Water/steam

High pressure

Air at 1 atm

Pressured air

Advantages :

high concentration level (200-1 000)— high temperature (300K)(>100 MW). higher efficiencies for the whole cycle.

compact recepteurs.

Less thermal losses.

Inconvenients :

high investment cost (2 axis tracking systems, central receiver, Moderate temperatures (250 – 400°C)

Low specific power of the basic unit (<500 MWth)

Solar tower with water/steam as a heat transfer fluid

PS 10 Power Plant (Spain 2006) 11 MWe Rankine cycle Technology : saturated water/steam Solar field : 75 500 m2 Storage : pressurized water, 20MWh 50mn@50%rate

Annual electricity production : 23 GWh

Dishes (Parabolic collectors)

Heat transfer fluid

* Synthetic oil T < 400°C Ex: VP-1 Medium pressure (10 – 15 bars)
* Gaz : water/steam, air, helium, hydrogen T > 400°C High pressure (> 60 bars)
* Liquid metal : sodium

Advantages :

high level of concentration (500-1200) – very high temperature(>600 °C) Stirling cyle (He or H2) or Brayton cycle : high efficiency for power rate < 50 kW Modular

Inconvenients :

Low power units (< 100 kW) – Low collector area (< 100 m2) high specific costs (> 10 000 €/kW).

Costs and performances

Technology	Parabolic trough	Tower	Dish-Stirling
Thermal efficiency	70 %	73 %	75 %
Power (MW _{th})	1 - 300	10 - 100	< 0,1
Concentration ratio	80 - 500	700 - 1200	6000-10000
Working temperature	250 – 400 °C	450 – 1000 °C	600 – 1200 °C
Cost of collectors (€/m²)	210 - 250	140 - 220	~1000
Capital cost (€/W _e)	2,8 – 3,5	3 - 4	7 - 14
Annual solar-to-electricity conversion efficiency (%)	14%	15%	17%

Annual cost of solar thermal electricity: 0.15 – 0.20 €/kWh_e

World market is taking off

Solar thermal heating and cooling

Solar water heating collectors global capacity

Solar water heating collectors top 10 countries

Capacity added in 2012 in the top 10 countries

Environmental Impact of Renewable Energy and Energy Investments
Environmental Impacts

- GreenHouse Gas Emissions
- Direct impacts on eco-systems
- Use of natural resources
- Impacts on human health
- Different pollutions (vision, odor, noise, light, electromagnetism)

Most environmental impacts are too different in nature to enable proper comparisons.

Only 2 indicators can be considered transversal.

- GHG emissions, Energy Investment

Results are based on LCA.

GHG emissions in power generation

g. CO2 eq. / kWh

GHG emissions in power generation

g. CO2 eq. / kWh

GHG emissions in heat generation

g. CO2 eq. / kWh

Energy Investment Cost Power generation – RE technologies

Primary energy over the life cycle production

Energy Investment Cost Conventional Power generation

not accounting the primary energy withhold in the fuel

Power plant (excluding fuel) Fuel supply

Energy Investment Cost Conventional Power generation

Also accounting the primary energy in the fuel

Power plant (excluding fuel) Fuel supply Primary energy in fuel

Energy Investment Cost Heat production

Primary energy over the life cycle*

Impact of a battery storage in PV production in buildings

- GHG emissions : + 20 to 80 g eq. CO_2/kWh
- EIC : + 9 to 20%
- Best performance : Li-ion and NAS batteries

simplified calculation based on : A Review of Battery LCA State of Knowledge and Critical Needs Sullivan and Gaines Argone Laboratory (2010). Only accounts for CO2 and CH4.